#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""Class for generating channel frequency responses"""
from sionna.channel.utils import subcarrier_frequencies, cir_to_ofdm_channel
import tensorflow as tf
[docs]
class GenerateOFDMChannel:
# pylint: disable=line-too-long
r"""GenerateOFDMChannel(channel_model, resource_grid, normalize_channel=False)
Generate channel frequency responses.
The channel impulse response is constant over the duration of an OFDM symbol.
Given a channel impulse response
:math:`(a_{m}(t), \tau_{m}), 0 \leq m \leq M-1`, generated by the ``channel_model``,
the channel frequency response for the :math:`s^{th}` OFDM symbol and
:math:`n^{th}` subcarrier is computed as follows:
.. math::
\widehat{h}_{s, n} = \sum_{m=0}^{M-1} a_{m}(s) e^{-j2\pi n \Delta_f \tau_{m}}
where :math:`\Delta_f` is the subcarrier spacing, and :math:`s` is used as time
step to indicate that the channel impulse response can change from one OFDM symbol to the
next in the event of mobility, even if it is assumed static over the duration
of an OFDM symbol.
Parameters
----------
channel_model : :class:`~sionna.channel.ChannelModel` object
An instance of a :class:`~sionna.channel.ChannelModel` object, such as
:class:`~sionna.channel.RayleighBlockFading` or
:class:`~sionna.channel.tr38901.UMi`.
resource_grid : :class:`~sionna.ofdm.ResourceGrid`
Resource grid
normalize_channel : bool
If set to `True`, the channel is normalized over the resource grid
to ensure unit average energy per resource element. Defaults to `False`.
dtype : tf.DType
Complex datatype to use for internal processing and output.
Defaults to `tf.complex64`.
Input
-----
batch_size : int
Batch size. Defaults to `None` for channel models that do not require this paranmeter.
Output
-------
h_freq : [batch size, num_rx, num_rx_ant, num_tx, num_tx_ant, num_ofdm_symbols, num_subcarriers], tf.complex
Channel frequency responses
"""
def __init__(self, channel_model, resource_grid, normalize_channel=False,
dtype=tf.complex64):
# Callable used to sample channel input responses
self._cir_sampler = channel_model
# We need those in call()
self._num_ofdm_symbols = resource_grid.num_ofdm_symbols
self._subcarrier_spacing = resource_grid.subcarrier_spacing
self._num_subcarriers = resource_grid.fft_size
self._normalize_channel = normalize_channel
self._sampling_frequency = 1./resource_grid.ofdm_symbol_duration
# Frequencies of the subcarriers
self._frequencies = subcarrier_frequencies(self._num_subcarriers,
self._subcarrier_spacing,
dtype)
def __call__(self, batch_size=None):
# Sample channel impulse responses
h, tau = self._cir_sampler( batch_size,
self._num_ofdm_symbols,
self._sampling_frequency)
h_freq = cir_to_ofdm_channel(self._frequencies, h, tau,
self._normalize_channel)
return h_freq