#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""Various classes for spatially correlated flat-fading channels."""
from abc import ABC, abstractmethod
import tensorflow as tf
from tensorflow.experimental.numpy import swapaxes
from sionna.utils import expand_to_rank, matrix_sqrt
[docs]
class SpatialCorrelation(ABC):
# pylint: disable=line-too-long
r"""Abstract class that defines an interface for spatial correlation functions.
The :class:`~sionna.channel.FlatFadingChannel` model can be configured with a
spatial correlation model.
Input
-----
h : tf.complex
Tensor of arbitrary shape containing spatially uncorrelated
channel coefficients
Output
------
h_corr : tf.complex
Tensor of the same shape and dtype as ``h`` containing the spatially
correlated channel coefficients.
"""
@abstractmethod
def __call__(self, h, *args, **kwargs):
return NotImplemented
[docs]
class KroneckerModel(SpatialCorrelation):
# pylint: disable=line-too-long
r"""Kronecker model for spatial correlation.
Given a batch of matrices :math:`\mathbf{H}\in\mathbb{C}^{M\times K}`,
:math:`\mathbf{R}_\text{tx}\in\mathbb{C}^{K\times K}`, and
:math:`\mathbf{R}_\text{rx}\in\mathbb{C}^{M\times M}`, this function
will generate the following output:
.. math::
\mathbf{H}_\text{corr} = \mathbf{R}^{\frac12}_\text{rx} \mathbf{H} \mathbf{R}^{\frac12}_\text{tx}
Note that :math:`\mathbf{R}_\text{tx}\in\mathbb{C}^{K\times K}` and :math:`\mathbf{R}_\text{rx}\in\mathbb{C}^{M\times M}`
must be positive semi-definite, such as the ones generated by
:meth:`~sionna.channel.exp_corr_mat`.
Parameters
----------
r_tx : [..., K, K], tf.complex
Tensor containing the transmit correlation matrices. If
the rank of ``r_tx`` is smaller than that of the input ``h``,
it will be broadcast.
r_rx : [..., M, M], tf.complex
Tensor containing the receive correlation matrices. If
the rank of ``r_rx`` is smaller than that of the input ``h``,
it will be broadcast.
Input
-----
h : [..., M, K], tf.complex
Tensor containing spatially uncorrelated
channel coeffficients.
Output
------
h_corr : [..., M, K], tf.complex
Tensor containing the spatially
correlated channel coefficients.
"""
def __init__(self, r_tx=None, r_rx=None):
super().__init__()
self.r_tx = r_tx
self.r_rx = r_rx
@property
def r_tx(self):
r"""Tensor containing the transmit correlation matrices.
Note
----
If you want to set this property in Graph mode with XLA, i.e., within
a function that is decorated with ``@tf.function(jit_compile=True)``,
you must set ``sionna.Config.xla_compat=true``.
See :py:attr:`~sionna.Config.xla_compat`.
"""
return self._r_tx
@r_tx.setter
def r_tx(self, value):
self._r_tx = value
if self._r_tx is not None:
self._r_tx_sqrt = matrix_sqrt(value)
else:
self._r_tx_sqrt = None
@property
def r_rx(self):
r"""Tensor containing the receive correlation matrices.
Note
----
If you want to set this property in Graph mode with XLA, i.e., within
a function that is decorated with ``@tf.function(jit_compile=True)``,
you must set ``sionna.Config.xla_compat=true``.
See :py:attr:`~sionna.Config.xla_compat`.
"""
return self._r_rx
@r_rx.setter
def r_rx(self, value):
self._r_rx = value
if self._r_rx is not None:
self._r_rx_sqrt = matrix_sqrt(value)
else:
self._r_rx_sqrt = None
def __call__(self, h):
if self._r_tx_sqrt is not None:
r_tx_sqrt = expand_to_rank(self._r_tx_sqrt, tf.rank(h), 0)
h = tf.matmul(h, r_tx_sqrt, adjoint_b=True)
if self._r_rx_sqrt is not None:
r_rx_sqrt = expand_to_rank(self._r_rx_sqrt, tf.rank(h), 0)
h = tf.matmul(r_rx_sqrt, h)
return h
[docs]
class PerColumnModel(SpatialCorrelation):
# pylint: disable=line-too-long
r"""Per-column model for spatial correlation.
Given a batch of matrices :math:`\mathbf{H}\in\mathbb{C}^{M\times K}`
and correlation matrices :math:`\mathbf{R}_k\in\mathbb{C}^{M\times M}, k=1,\dots,K`,
this function will generate the output :math:`\mathbf{H}_\text{corr}\in\mathbb{C}^{M\times K}`,
with columns
.. math::
\mathbf{h}^\text{corr}_k = \mathbf{R}^{\frac12}_k \mathbf{h}_k,\quad k=1, \dots, K
where :math:`\mathbf{h}_k` is the kth column of :math:`\mathbf{H}`.
Note that all :math:`\mathbf{R}_k\in\mathbb{C}^{M\times M}` must
be positive semi-definite, such as the ones generated
by :meth:`~sionna.channel.one_ring_corr_mat`.
This model is typically used to simulate a MIMO channel between multiple
single-antenna users and a base station with multiple antennas.
The resulting SIMO channel for each user has a different spatial correlation.
Parameters
----------
r_rx : [..., M, M], tf.complex
Tensor containing the receive correlation matrices. If
the rank of ``r_rx`` is smaller than that of the input ``h``,
it will be broadcast. For a typically use of this model, ``r_rx``
has shape [..., K, M, M], i.e., a different correlation matrix for each
column of ``h``.
Input
-----
h : [..., M, K], tf.complex
Tensor containing spatially uncorrelated
channel coeffficients.
Output
------
h_corr : [..., M, K], tf.complex
Tensor containing the spatially
correlated channel coefficients.
"""
def __init__(self, r_rx):
super().__init__()
self.r_rx = r_rx
@property
def r_rx(self):
"""Tensor containing the receive correlation matrices.
Note
----
If you want to set this property in Graph mode with XLA, i.e., within
a function that is decorated with ``@tf.function(jit_compile=True)``,
you must set ``sionna.Config.xla_compat=true``.
See :py:attr:`~sionna.Config.xla_compat`.
"""
return self._r_rx
@r_rx.setter
def r_rx(self, value):
self._r_rx = value
if self._r_rx is not None:
self._r_rx_sqrt = matrix_sqrt(value)
def __call__(self, h):
if self._r_rx is not None:
h = swapaxes(h, -2, -1)
h = tf.expand_dims(h, -1)
r_rx_sqrt = expand_to_rank(self._r_rx_sqrt, tf.rank(h), 0)
h = tf.matmul(r_rx_sqrt, h)
h = tf.squeeze(h, -1)
h = swapaxes(h, -2, -1)
return h