## SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.# SPDX-License-Identifier: Apache-2.0#"""Layers for encoding of linear codes."""importtensorflowastffromtensorflow.keras.layersimportLayerfromsionna.fec.utilsimportpcm2gmimportnumbers# to check if n, k are numbers
[docs]classLinearEncoder(Layer):# pylint: disable=line-too-longr"""LinearEncoder(enc_mat, is_pcm=False, dtype=tf.float32, **kwargs) Linear binary encoder for a given generator or parity-check matrix ``enc_mat``. If ``is_pcm`` is True, ``enc_mat`` is interpreted as parity-check matrix and internally converted to a corresponding generator matrix. The class inherits from the Keras layer class and can be used as layer in a Keras model. Parameters ---------- enc_mat : [k, n] or [n-k, n], ndarray Binary generator matrix of shape `[k, n]`. If ``is_pcm`` is True, ``enc_mat`` is interpreted as parity-check matrix of shape `[n-k, n]`. dtype: tf.DType Defaults to `tf.float32`. Defines the datatype for the output dtype. Input ----- inputs: [...,k], tf.float32 2+D tensor containing information bits. Output ------ : [...,n], tf.float32 2+D tensor containing codewords with same shape as inputs, except the last dimension changes to `[...,n]`. Raises ------ AssertionError If the encoding matrix is not a valid binary 2-D matrix. Note ---- If ``is_pcm`` is True, this layer uses :class:`~sionna.fec.utils.pcm2gm` to find the generator matrix for encoding. Please note that this imposes a few constraints on the provided parity-check matrix such as full rank and it must be binary. Note that this encoder is generic for all binary linear block codes and, thus, cannot implement any code specific optimizations. As a result, the encoding complexity is :math:`O(k^2)`. Please consider code specific encoders such as the :class:`~sionna.fec.polar.encoding.Polar5GEncoder` or :class:`~sionna.fec.ldpc.encoding.LDPC5GEncoder` for an improved encoding performance. """def__init__(self,enc_mat,is_pcm=False,dtype=tf.float32,**kwargs):super().__init__(dtype=dtype,**kwargs)# tf.int8 currently not supported by tf.matmultassert(dtypein(tf.float16,tf.float32,tf.float64,tf.int32,tf.int64)), \
"Unsupported dtype."# check input values for consistencyassertisinstance(is_pcm,bool), \
'is_parity_check must be bool.'# verify that enc_mat is binaryassert((enc_mat==0)|(enc_mat==1)).all(),"enc_mat is not binary."assert(len(enc_mat.shape)==2),"enc_mat must be 2-D array."# in case parity-check matrix is provided, convert to generator matrixifis_pcm:self._gm=pcm2gm(enc_mat,verify_results=True)else:self._gm=enc_matself._k=self._gm.shape[0]self._n=self._gm.shape[1]self._coderate=self._k/self._nassert(self._k<=self._n),"Invalid matrix dimensions."self._gm=tf.cast(self._gm,dtype=self.dtype)########################################## Public methods and properties#########################################@propertydefk(self):"""Number of information bits per codeword."""returnself._k@propertydefn(self):"Codeword length."returnself._n@propertydefgm(self):"Generator matrix used for encoding."returnself._gm@propertydefcoderate(self):"""Coderate of the code."""returnself._coderate########################## Keras layer functions#########################defbuild(self,input_shape):"""Nothing to build, but check for valid shapes."""assertinput_shape[-1]==self._k,"Invalid input shape."assert(len(input_shape)>=2),'The inputs must have at least rank 2.'defcall(self,inputs):"""Generic encoding function based on generator matrix multiplication. """c=tf.linalg.matmul(inputs,self._gm)# faster implementation of tf.math.mod(c, 2)c_uint8=tf.cast(c,tf.uint8)c_bin=tf.bitwise.bitwise_and(c_uint8,tf.constant(1,tf.uint8))c=tf.cast(c_bin,self.dtype)returnc
[docs]classAllZeroEncoder(Layer):r"""AllZeroEncoder(k, n, dtype=tf.float32, **kwargs) Dummy encoder that always outputs the all-zero codeword of length ``n``. Note that this encoder is a dummy encoder and does NOT perform real encoding! The class inherits from the Keras layer class and can be used as layer in a Keras model. Parameters ---------- k: int Defining the number of information bit per codeword. n: int Defining the desired codeword length. dtype: tf.DType Defaults to `tf.float32`. Defines the datatype for internal calculations and the output dtype. Input ----- inputs: [...,k], tf.float32 2+D tensor containing arbitrary values (not used!). Output ------ : [...,n], tf.float32 2+D tensor containing all-zero codewords. Raises ------ AssertionError ``k`` and ``n`` must be positive integers and ``k`` must be smaller (or equal) than ``n``. Note ---- As the all-zero codeword is part of any linear code, it is often used to simulate BER curves of arbitrary (LDPC) codes without the need of having access to the actual generator matrix. However, this `"all-zero codeword trick"` requires symmetric channels (such as BPSK), otherwise scrambling is required (cf. [Pfister]_ for further details). This encoder is a dummy encoder that is needed for some all-zero codeword simulations independent of the input. It does NOT perform real encoding although the information bits are taken as input. This is just to ensure compatibility with other encoding layers. """def__init__(self,k,n,dtype=tf.float32,**kwargs):super().__init__(dtype=dtype,**kwargs)#assert error if r>1 or k,n are negativassertisinstance(k,numbers.Number),"k must be a number."assertisinstance(n,numbers.Number),"n must be a number."k=int(k)# k or n can be float (e.g. as result of n=k*r)n=int(n)# k or n can be float (e.g. as result of n=k*r)assertk>-1,"k cannot be negative."assertn>-1,"n cannot be negative."assertn>=k,"Invalid coderate (>1)."# init encoder parametersself._k=kself._n=nself._coderate=k/n########################################## Public methods and properties#########################################@propertydefk(self):"""Number of information bits per codeword."""returnself._k@propertydefn(self):"Codeword length."returnself._n@propertydefcoderate(self):"""Coderate of the LDPC code."""returnself._coderate########################## Keras layer functions#########################defbuild(self,input_shape):"""Nothing to build."""passdefcall(self,inputs):"""Encoding function that outputs the all-zero codeword. This function returns the all-zero codeword of shape `[..., n]`. Note that this encoder is a dummy encoder and does NOT perform real encoding! Args: inputs (tf.float32): Tensor of arbitrary shape. Returns: `tf.float32`: Tensor of shape `[...,n]`. Note: This encoder is a dummy encoder that is needed for some all-zero codeword simulations independent of the input. It does NOT perform real encoding although the information bits are taken as input. This is just to ensure compatibility with other encoding layers. """# keep shape of first dimensions# return an all-zero tensor of shape [..., n]output_shape=tf.concat([tf.shape(inputs)[:-1],tf.constant(self._n,shape=[1])],0)c=tf.zeros(output_shape,dtype=super().dtype)returnc