#
# SPDX-FileCopyrightText: Copyright (c) 2021-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
"""Layers implementing upsampling"""
import tensorflow as tf
from tensorflow.keras.layers import Layer
from tensorflow.experimental.numpy import swapaxes
from sionna.utils.tensors import flatten_last_dims
[docs]
class Upsampling(Layer):
"""Upsampling(samples_per_symbol, axis=-1, **kwargs)
Upsamples a tensor along a specified axis by inserting zeros
between samples.
Parameters
----------
samples_per_symbol: int
The upsampling factor. If ``samples_per_symbol`` is equal to `n`,
then the upsampled axis will be `n`-times longer.
axis: int
The dimension to be up-sampled. Must not be the first dimension.
Input
-----
x : [...,n,...], tf.DType
The tensor to be upsampled. `n` is the size of the `axis` dimension.
Output
------
y : [...,n*samples_per_symbol,...], same dtype as ``x``
The upsampled tensor.
"""
def __init__(self, samples_per_symbol, axis=-1, **kwargs):
super().__init__(**kwargs)
self._samples_per_symbol = samples_per_symbol
self._axis = axis
def build(self, input_shape):
paddings = []
for _ in range(len(input_shape)):
paddings.append([0, 0])
paddings.append([0, self._samples_per_symbol-1])
self._paddings = paddings
def call(self, inputs):
x = swapaxes(inputs, self._axis, -1)
x = tf.expand_dims(x, -1)
x = tf.pad(x,
self._paddings,
constant_values=tf.cast(0, dtype=x.dtype))
x = flatten_last_dims(x, 2)
x = swapaxes(x, -1, self._axis)
return x